
LLNL-CONF-413253

A Case for Database Filesystems

P. A. Adams, J. C. Hax

May 22, 2009

Space Mission Challenges for IT - 2009
Pasadena, CA, United States
July 19, 2009 through July 23, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

> 40 <

1


Abstract— Data intensive science is offering new
challenges and opportunities for Information
Technology and traditional relational databases
in particular. Database filesystems offer the
potential to store Level Zero data and analyze
Level 1 and Level 3 data within the same
database system [2]. Scientific data is typically
composed of both unstructured files and scalar
data. Oracle SecureFiles is a new database
filesystem feature in Oracle Database 11g that is
specifically engineered to deliver high
performance and scalability for storing
unstructured or file data inside the Oracle
database. SecureFiles presents the best of both
the filesystem and the database worlds for
unstructured content. Data stored inside
SecureFiles can be queried or written at
performance levels comparable to that of
traditional filesystems while retaining the
advantages of the Oracle database.

Index Terms—High Availability, Database Systems, Data
Management, Information Systems, Data Intensive Science,
eScience

I. INTRODUCTION

“Show me a scientist who did not want more data,” said Alex
Szalay of John Hopkins University [1]. Certainly the
statement is true for planetary science, but it is also almost
certainly true for all scientists and all scientific disciplines.

Two unique trends are currently occurring within scientific
computing. The first trend is the explosion in data volumes

Manuscript received April 28th, 2009. This work was in part performed

under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 and in part
performed under the auspices of the Oracle Corporation.

Philip A. Adams is a Sr. Systems Architect with the National Ignition
Facility at Lawrence Livermore National Lab, Livermore, CA. (925-422-
0493; adams64@llnl.gov.).

John C. Hax is a Sr. Systems Architect with Oracle Corporation, 7604
Technology Way, Denver, CO 80237 (john.hax@oracle.com; 720-979-3220.

which is being driven by a number of factors: better and more
diverse instrumentation, flexible optics, coordinated multi-
instrument observatories, and in a self perpetuating cycle,
improvements in Information Technology (IT) itself. In
addition, international funding efforts have enabled larger,
more complex instruments. The second trend in scientific
computing is the increasingly collaborative nature of data
analysis which is driven by the funding model, the global
distribution of the scientific knowledge base, and the
realization that the collaborative model is often more
productive than research at the individual level. The
philosophy of the NASA’s Science Mission Directorate
(SMD) is that science does not result from the launch of a
mission or the collection of data. Rather, science only occurs
through the analysis and understanding of that data. Broadly
defined, Research & Analysis is the process used by NASA to
produce the concept studies that provide the scientific basis for
a mission, the necessary technology and techniques for
implementing the mission, the calibration, validation, and
analysis of data as a mission is underway, and the analysis of
archived data after a mission ends. Healthy mission science
teams and data analysis programs must accompany every
successful mission. Scientists have noted the marked disparity
between tremendous growth in the performance of computers,
sensors, data storage, networks, and other system elements,
and the decidedly slower growth in scientific insight.
Furthermore, they assert that this disparity is due, in part, to
the increasing complexity of managing ever larger and more
distributed computations and data. [3]

With diagnostic equipment, satellite, video, and camera
imagery streaming data at ever increasing rates, it is now
commonplace for large scientific projects to generate
petabytes of data. SQL/Scalar, XML, Image, Monte Carlo
Simulations, Audio/Video, telemetry, and spectrometers are
examples of the diverse types of data generated or utilized by
space missions. Vector and spatial data is then available for
scientific analysis. The Lunar Reconnaissance Obiter (LRO)
is an example of a platform that generates multiple data types.
LRO will generate standard gif images, streaming video,
spectrometry data, photometer data, and telemetry data.
However, many traditional data analysis and management
approaches have split structured and unstructured data across
databases, file and email servers, workstations, and laptops.
This distribution not only compromises the security and
integrity of the data, but more importantly makes determining
its pedigree harder. In addition, searching and data integration
are time-consuming if not difficult tasks in the distributed
environment. There is huge potential for scientific discovery

A Case for Database Filesystems

Philip A. Adams, National Ignition Facility
John C. Hax, Oracle Corporation, Member IEEE

> 40 <

2

by combining information from these multiple, diverse and
distributed data resources.
Traditionally, filesystems have been the primary method of
storing scientific data and images. Relational database
systems (RDBMS) were primarily used for the storage of
metadata. This has the negative impact of relegating scientific
data from structured to semi-structured file characteristics.
There are numerous drawbacks to having content stored in an
unstructured manner. These drawbacks include but are not
limited to data curation, pedigree, security, availability,
recoverability, and manageability. It should also be
mentioned that a reliance on filesystems often precludes the
utilization of institutional IT resources and leveraging
institutional investments in commercial software. Many of the
data challenges faced by the high energy density (HED)
physics community are similar to those faced by the
astronomy and planetary science community. As a leader in
innovation and HED physics, the National Ignition Facility
(NIF) has embraced database filesystems as a way to bridge
the gap between relational databases and filesystems.

II. FILESYSTEMS

Historically, filesystems have been the preferred method for
storage of unstructured content and have provided better
throughput directly to storage devices for Tier 0 (raw
experimental data) content. Examples of distributed
architectures that use filesystems for both structured and
unstructured content are HDF5, Lustre [5], and Google
Filesystem (GFS). These solutions aim to provide maximum
scalability to meet data volume and ingestion requirements
with provisions for fail over and high availability through data
replication.

Another heralded advantage of filesystems is the ubiquity of
accessing a filesystem. A wide variety of operating systems
support protocols such as NFS, SMB, CIFS and FTP. By
extension, many application programming interfaces are
available to do standard file manipulation such as file open
(f_open), file close (f_close), importing the java io package, or
using ifstream/ofstream C++ file I/O classes.

Conversely, data stored in legacy relational databases could
only be accessed via SQL using application specific database
drivers. Although there has been wide support for database
drivers by operating systems and programming libraries to
make database data equally accessible, these access
mechanisms have not been able to completely replace
filesystem access mechanisms. Because no common database
and filesystem access protocol was available, the burden
shifted to application developers and scientific researchers to
make sense of the two silos of information.

A. Map Reduce

The MapReduce programming model popularized at Google,
Yahoo!, and Facebook has triggered a lot of debate about the
best way to analyze data. By utilizing this framework, certain
kinds of problems can be distributed across a large server

farm. It is not uncommon for a server farm running Hadoop
or Google Filesystem (GFS) to process many 100’s of GBs of
data in hours. This capability further propagates the notion of
using a filesystem to store and analyze data.

Despite the ability to rapidly analyze an impressive amount of
data, query response times for more targeted analysis or
interactive querying can be dismal compared to an RDBMS
[11]. Furthermore, as a data management, data curation, and
collaborative engine, MapReduce falls short. Hence its
overall usefulness has been scrutinized by many database
luminaries such as Michael Stonebraker and David DeWitt
[12]. In an effort to bridge the gap between the two data
analysis technologies, the Hive project, a data warehouse
infrastructure built on top of Hadoop, was created to enable a
SQL based query language to be run. Many advocates of the
MapReduce paradigm suggest that it is not a database system,
so don’t judge it as one. Rather, accept it for the power tool
that it is.

The MapReduce framework is implemented in C++ with
interfaces in Python and Java. A scientist has to be a
programmer – not just a data consumer – to use it. This runs
counter to the stated goals of scientific institutions, which is to
increase the amount of time that researchers spend on science.
[4]

Because the technical advantages of MapReduce are difficult
to ignore, one could guess that future databases will
incorporate a powerful SQL engine with MapReduce
functionality. This could potentially solve the issue often
experienced in petabyte-scale data analysis where significant
time is wasted transferring data to the cluster for processing.
The need is intensifying to unify analytical processing and
curation while providing a common platform for queries,
machine learning, text mining, and statistical computing.

III. MODERN DATABASES: RELATIONAL DATA MEETS FILES

Prior to the latest generation of database engines, the sheer
number of data types, complexity and diversity made
combining data in any single repository a daunting task with
many technical challenges. In addition, solutions were not
available that were well matched to the science requirements
or the scalability challenges that large data volumes present.
This forced a number of scientific projects to split the data
between a database and a filesystem or use the filesystem
entirely for all data types.

However, the split data model causes a number of data
management issues. Without a single source of truth for
highly dynamic data, there is burden keeping disparate data
repositories current. Disjointed security and auditing rules and
a fragmented backup and recovery policy are also common
challenges for a split data model. Merging data between
disparate data silos can be a time consuming task. For large
volumes, transporting data through the network introduces
undue latency on dissemination of critical analysis results.

> 40 <

3

Modern-day RDBMS databases, such as Oracle’s 11g
Database Server, can accommodate the disparate data types
and provide a framework enabling more ambitious data
integration architectures that are well-adapted for semantic
grids, simulation, analysis, data mining, and visualization.
SQL, PL/SQL, Java, C, and PHP are available to load, search,
join, compute and display results. In addition, the database
eases the burden of data management by providing a security
infrastructure, methods for holistic backup and recovery, and
long term archival and retrieval of historical data.

A. Relieving the Burdens of Long Term Data Curation

Data curation is seldom a primary focus of many scientific
endeavors. However, in order to enable collaborative science,
other research communities and projects need to be able to
access those repositories and be able to validate the pedigree,
and therefore the accuracy, of the data. Without sound data
stewardship practices, many future systems will be unable to
use the data. Storage systems holding the data may be
unreliable. Many scientists in the HED realm have found it
cumbersome to access research data on legacy cartridges and
tapes. Searching for specific data may be next to impossible
without undertaking a huge data migration project – and even
then, the data integrity may be in question due to inadequate
data models and management techniques. By keeping the data
in a robust repository such as an Oracle database, as storage
subsystems change, the database can transparently move the
data from one media type to another using Automatic Storage
Management (ASM).

Level 0 (Raw) data is typically transformed and enriched with
data from disparate systems. What happens when a diagnostic
is found to have incorrect calibration data? Without strict
relationships, this could be a nightmare. It may be easier to
rerun analysis to reproduce the Level 1, 2 and 3 data.
However, an unknown quantity of Level 4 content has been
generated from this data and is stored on many researchers’
workstations and file shares. By utilizing a content
management framework suited for eResearch, the observation
data that validates the research activity is preserved and
cataloged with a Uniform Resource Name (URN) along with
links to reference material. When an update of data occurs
that underpins the logic of a higher level document, automatic
invalidation of the document can occur as part of the
workflow until the both the data and the document have been
reviewed. By properly curating data and using systems that
enable this activity, future research communities and projects
will be able to leverage the information stored in the virtual
data museum for years to come.

B. Metadata Management

Metadata is “data about data.” Filesystems store provide very
simple metadata on a per file or directory basis such as author,
file creation, modification time, last accessed, file size, and
permissions. A form of rudimentary user-defined metadata
might be the naming and folder conventions.

The existence of these user-defined conventions indicates
there is a requirement for far richer metadata to describe
content. In addition to the common metadata, content
management systems support the definition of custom
metadata attributes by content type. For example, in the NIF
environment, every optics inspection image has attributes for
pixel height and width, orientation, camera location, and
resolution. These data attributes are needed by the software to
interpret and process these images.

C. Data Access Methods and Standards

One of the greatest challenges for many scientific
collaboration projects, including the National Virtual
Observatory (NVO) has been the establishment of data access
methods and standards [13]. The basic goal for any data
repository is to get the data off the disks and hand it to the
requester in a usable format. Therefore, the need to support a
variety of access protocols is very important as researchers
challenge the data repository with a variety of tools. For some
time, Oracle databases have supported WebDAV, SQL,
PL/SQL (Oracle’s Procedural Language), OCI, OCCI, and
Java. With Oracle 11g SecureFiles, the access methods have
been extended - allowing both database clients and filesystem
clients to access the same content. Apart from being SQL
standards compliant, SecureFiles provides POSIX compliant
filesystem interfaces and content can be accessed through
open data protocols such as HTTP, NFS, and FTP. By
embracing common standards in the traditional database and
filesystem worlds, modern databases are well suited to be at
the center of all scientific data analysis efforts.

D. Web Ontology Language: A new way to analyze data

Modern databases, in addition to providing new access
protocols, support additional mechanisms for data analysis.
As an example, the OWL Web Ontology Language is
designed for use by applications that need to process the
content of information instead of just presenting information
to humans. The OWL Web Ontology Language is intended to
provide a language that can be used to describe the classes and
relations between content that are inherent in Web documents
and applications. OWL facilitates greater machine
interpretability of Web content than that supported by XML,
RDF, and RDF Schema (RDF-S) by providing additional
vocabulary along with formal semantics. OWL has three
increasingly-expressive sublanguages: OWL Lite, OWL DL,
and OWL Full [7]. RDF data types are queried by the
SPARQL query language. Both OWL and SPARQL are W3C
standards. Oracle offers full support for both SPARQL and
OWL. These technologies offer great promise for finding new
ways to analyze data in both consolidated and distributed data
repositories. The United Kingdom’s National Mapping
Agency, Ordnance Survey, uses the Semantic Web internally
to more accurately and inexpensively generate geographic
maps. OWL and the Semantic Web are predicated upon
tagging and marking up data. It is much easier to mark up data

> 40 <

4

at the meta-data level than when that data is contained in flat
files and stored in filesystems. Currently, scientific
researchers are developing some of the most advanced
applications, including a system that pinpoints genetic causes
of heart disease and another system that reveals the early
stages of influenza outbreaks [8].

IV. NATIONAL IGNITION FACILITY’S EXPERIENCE USING

SECUREFILES

A. Overview of NIF

The National Ignition Facility, the world’s largest laser, is
located at Lawrence Livermore National Laboratory in
Livermore, California. When NIF’s 192 laser beams focus
their energy on a BB-sized target inside the target chamber,
temperatures of more than 100 million degrees and pressures
more than 100 billion times the Earth’s atmosphere can be
achieved. The mission of NIF is to become a premier
international center for experimental science. In addition to
enabling stockpile stewardship and high energy density
research, NIF will allow scientists from around the world to
gain new insights into astrophysical phenomena such as
supernovae, giant gas planets and black holes.

The National Ignition Facility uses Oracle’s 11g Database and
its unique features for managing, storing and analyzing
massive amounts of data and images resulting from the
facility’s large-scale experiments on inertial confinement
thermonuclear fusion.

B. NIF’s use of the Database for Capture, Curation,
Archiving and Preservation of data

An Oracle 11g Database supports NIF’s laser control system,
which allows NIF scientists to adjust the settings of the laser
and target to their exact specifications prior to their
experiments, and then captures the rush of data following each
experiment. Thirty minutes following the target shot, the
resulting large high-resolution images and data are stored in
the database in their native formats using Oracle SecureFiles,
and an initial analysis is conducted to provide scientists with
an overview of the experiment results.

Two types of analysis are done on a regular basis:

Target Diagnostic Analysis
Optics Inspection

During Target Diagnostic Analysis, data from a number of
detectors, oscilloscopes, interferometers, streak cameras and
other instruments are analyzed to measure the performance of
the target. HDF files are ingested into the Oracle Database, a
URN is given, and metadata is used to enrich the content
object. A variety of IDL[14] scripts analyze the data
contained in the files and store the results and associated
metadata in the database. Pedigree metadata accompanies the
results to substantiate their lineage.

During Optics Inspection, a number of raw images from a
variety of cameras provide detailed information about the
largest optical instrument ever built. As the inspection process
analyzes images for micron-sized defects, detections are
stored in the database for correlation with past defects. The
results of this analysis determine whether to perform the next
laser shot or whether maintenance is needed. By correlating
past and present inspections in the database, damage site
evolution, and other interesting optical phenomena is
discovered and studied.

The intention is to keep all experimental data and analysis
results available for instant retrieval throughout the
approximately 30 year lifetime of the facility. Data sizes for
the metadata, experimental and modeling data over a 3-4 year
timeframe could easily reach the multi-petabyte range. By
using the database to archive least recently used data to tape,
NIF is able to keep its spinning disk footprint down while still
preserving the ability to retrieve data transparently to the user
whether the data is seconds or decades old.

- Architecture involved:
o Oracle 11gRAC with SecureFiles
o Oracle CMSDK
o Oracle BPEL
o Java, IDL, ImageMagic

V. ORACLE SECUREFILES DATABASE FILESYSTEM

A. Overview

Oracle SecureFiles is a novel architecture that provides the
scalability of filesystems with the rich features and benefits
associated with the Oracle database. Prior to SecureFiles,
database systems were deemed too slow to accommodate the
I/O rates required for ingestion of large numbers of images
and experimental results. SecureFiles stores data as a first
class object within the database and supports all types of
content without compromising throughput or scalability.
Oracle SecureFiles extends data atomicity, consistency, and
durability from metadata to the previously unstructured
content stored as B-Files in a filesystem. Metadata can be
extended to include file type, pixel count, size, and many other
characteristics of the data that simplify search and analysis and
streamline data loading and parsing. In short, Oracle
SecureFiles treats all content equally. SecureFiles delivers or
exceeds filesystem performance for basic read/writes and
provides better scalability than traditional filesystems. In
addition to content equality, SecureFiles extends filesystem
features such as de-duplication and advanced filesystem
compression to optimize utilization of cache and storage. If
leveraged, these advantages stand to enable and reduce the
cost of Research & Analysis in support of space missions.

> 40 <

5

B. Architecture

The structural design of SecureFiles is similar to that of
filesystems. Unstructured data associated with semi-
structured content is associated and stored as a SecureFile
object. A SecureFile object is a collection of dynamic chunks
allocated from and stored in the Oracle database. Each chunk
is a set of contiguous data blocks as shown in Figure 1.

Figure 1. Base Table – Oracle table holding metadata plus
locator columns similar to a b-file pointer. [10]

C. Components

There are 6 major components comprising the SecureFiles
architecture. These are: Delta Update, Write Gather Cache,
Transformation management, Inode Management, Space
management, and the IO Management. Each SecureFile
segment is a collection of database extents that are contiguous
data blocks. This segment is a free space pool. Logically, a
SecureFiles segment consists of blocks that contain metadata
for space management and blocks that are SecureFile objects.
These components are shown in figure 2.

Figure 2. Components of SecureFiles

(1) Delta Update – Oracle SecureFiles introduces the concept
of ‘delta updates’, which enables non length-preserving
updates of file-like objects without undergoing file updates or
re-writes of existing data blocks. This is a major differentiator
with respect to filesystems or LOB’s. Updates to objects in
filesystems as well as databases require re-writes of portions
of objects that preserve length of the updates. This causes
inefficiencies in IO even for small updates. The Delta Update
component provides API’s that specify the object to update,
mapping of source and destination offsets, length of the delta,
and ensures IO cost of update operations is linear to the size of
the delta. The delta update operation also provides substantial
benefits in the performance of XML storage frameworks.

(2) Write Gather Cache (WGC) – the write gather cache is a
subset of the database buffer cache. The WGC gather buffers
a user specified amount of data before flushing to the storage
layer. This buffering of in-flight data greatly optimizes IO by
allocating larger disk tracts.

(3) Transformation Management (TM) - TM is comprised of
three major components; deduplication, compression, and
encryption. Cumulatively, these three features can greatly
reduce the cost and complexity of long-term information
curation and storage.

- Deduplication -The Oracle database server automatically
detects duplicate copies by generating both a pre-hash and a
full hash. eScience tends to generate large amounts of
images. Deduplication can greatly simplify image
management by simply maintaining a pointer to the base
image. Often it is the delta between image metadata that is
more important than the actual image itself.

- Compression – Oracle automatically detects if SecureFile
object data is compressible and compresses using multiple

> 40 <

6

file compression algorithms. If compression does not yield
any space savings or the data is already compressed,
SecureFiles will automatically turn off compression.

- Encryption – Encryption is a component of many NASA
and JPL funded missions. Oracle SecureFiles uses
Transparent Data Encryption (TDE) syntax for encryption.
Oracle SecureFiles supports automatic key management.

(4) Inode Management – The inode management layer is
responsible for initiating on-disk storage and access operations
on SecureFiles data in the buffer layer. Based on the array of
chunks returned by the space management layer, the inode
manager stores the either in the row-column intersection of the
base table associated with the object, or in the most current
header block of the SecureFile object.

(5) Space Management – The space management layer is
responsible for allocating free disk space to SecureFile objects
and de-allocating used space from SecureFile objects to the
SecureFile segment on disk. The space management layer
also support allocation of variable sized chunks.

(6) I/O Management – The I/O Management Layer is
responsible for satisfying I/O requests during reads and writes
of SecureFile objects. During writes, the Inode Manager
communicates the set of chunks obtained from the space
management layer and the write gather cache buffers to the
I/O Manager. The I/O Manager either writes to the write
buffer cache or asynchronously writes to the disk. Prior to the
disk write, the I/O Manager coalesces the chunks to optimize
disk throughput.

D. Performance

Oracle has performed benchmarks of SecureFiles against NFS
v3 filesystems in the environment described in Figure 3.

Figure 3. Architecture of the insert-only experiment for image
and video data

Insert-only experiments were performed for both image and
video data on hardware similar to Figure 3. One difference is

that to minimize network bottlenecks the server is both the
client and server. Concurrency varied from 1-16 processes.
Throughput numbers are shown in Figure 5 and 6.

WORKLOAD DETAILS

The test application simulates a real world DICOM

application consisting of patient metadata and DICOM images

[15]. We compare the performance of SecureFiles to that of

the NFSv3 filesystem. In both cases, metadata is stored in an

Oracle database. In the case of filesystem, the DICOM images

are stored on file servers that are accessed from a client

machine over NFSv3. In the case of SecureFiles, the metadata

as well as the DICOM images are stored inside an Oracle

database. The schema used for the test is described in Figure

4.

Figure 4. Schema Description

Filesystem SecureFile

number(10) primary key number(10) primary
key

varchar2 (300) Owner varchar2 (300) Name

varchar2 (100) PathToFile securefile Document

SECUREFILES VS FILESYSTEM (NFSV3 OVER EXT3
FS)

This section compares the performance of SecureFiles with

the Filesystem (for the workload discussed above). Note that

these throughput numbers are dependent on the network and
storage setup. Details of the setup can be found in the

configuration section of this document.

In Oracle Database 11g, SecureFiles supports a new logging

level, FILESYSTEM_LIKE_LOGGING, which is similar to

logging available with popular filesystems. When SecureFiles

logging is set to this level, Oracle writes only the metadata to

the redo log. This setting is similar to the metadata journaling

of filesystems, which reduces mean time to recovery from

failures and is sufficient for crash recovery or instance

recovery. SecureFiles also supports database logging in which

both the metadata and LOB data are written to the redo log.

This is especially useful when media recovery or standby

databases are required. In such cases, archive log should be

> 40 <

7

turned on. In our tests, we set SecureFiles to

FILESYSTEM_LIKE_LOGGING mode to keep the logging

level and functionality comparable to that of the filesystem

(ext3). Note that commit guarantees data on disk.

Single and multi-stream tests were done to see the

performance and scalability. We have tried to use the best

performing options for NFSv3 (async and rwsize of 32KB).

The noatime and writeback options for ext3 were also tried but

the results were not different from the NFSv3 async numbers.

Read Performance

SecureFile outperforms the NFSv3 access for all sizes. Gains

for the smaller file sizes are also due to reduced roundtrips

where metadata and data is accessed in one roundtrip unlike

the NFSv3 case where metadata and file is accessed in

separate roundtrips.

This demonstrates the improvements due to intelligent pre-

fetching, larger I/O sizes due to better contiguous space

allocations and network optimizations.

Figure 5. Read Throughput

Write Performance

SecureFile outperforms the NFSv3 access for all sizes. Again

as in the read case, for small file sizes the NFSv3 case has the

overhead of writing metadata and file separately in two

roundtrips.

This demonstrates the improvements due to the write gather
cache, larger contiguous I/O and space pre-allocation
optimizations.

Figure 6. Write Throughput

VI. CONCLUSION

The ultimate goal of science is to create new knowledge and
new discoveries. We believe that database filesystems offer
many advantages over traditional filesystems that will enable
the scientific community to utilize tools to enable scientists to
analyze data in new ways and overcome many of the
challenges of data intensive science.

We have explored how programs as diverse as HED physics
and space exploration can benefit from utilizing database
filesystems. The National Ignition Facility has demonstrated
the viability and efficiencies gained by using database
filesystems and associated RDBMS features in the
construction of its scientific data archive.

As new discoveries are made and data volumes increase, it is
imperative to have a robust database system that is not only
capable of managing the pedigree of that data, but also serve
as a knowledge repository for the future. Analyzing data in
new ways will lead to new discoveries.

> 40 <

8

REFERENCES

[1] Alex Szalay, Science Magazine, Vol 323, 6 March, 2009 Podcast

[2] http://podaac.jpl.nasa.gov/WEB_INFO/glossary.html#DDD

[3] Gray et al. Scientific Data Management in the Coming Decade

[4] NSF - Workshop on the Challenges of Scientific Workflows May
12, 2006 Arlington, VA

[5] http://nasascience.nasa.gov/researchers

[6] LUSTRE Filesystem: High Performance Storage and Scalable
Filesystem. Sun, Dec 2007

[7] Olsen, Zimmerman, Bos –Scientific Collaboration on the Internet

[8] http://www.w3.org/TR/owl-guide/#OWLGlossary

[9] The Semantic Web in Action, Scientific American Dec. 2007

[10]Ganesh, et al. http://www.vldb.org/pvldb/1/1454170.pdf

[11]Apache HIVE http://wiki.apache.org/hadoop/Hive

[12]Stonebraker/DeWitt – Map Reduce: A major step backwards
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-
back.html

[13] Ackerman, Mark S., Erik Hofer, and Robert Hanisch.
“Collaboratory: The National Virtual Observatory.” Gary Olson, Ann
Zimmerman, and Nathan Bos (eds.), Science on the Internet, MIT
Press, 2007

[14] http://www.ittvis.com/ProductServices/IDL.aspx

[15] http://medical.nema.org/

IM release number is: LLNL-CONF-XXXXXXX

